Improvement of an antibody-enzyme coupling yield by enzyme surface supercharging

نویسندگان

  • Agneta A Prasse
  • Thomas Zauner
  • Karin Büttner
  • Ralf Hoffmann
  • Thole Zuchner
چکیده

BACKGROUND Protein cross-coupling reactions demand high yields, especially if the products are intended for bioanalytics, like enzyme-linked immunosorbent assays. Amongst other factors, the coupling yield depends on the concentration of the proteins being used for coupling. Protein supercharging of enzymes can increase the solubility dramatically, which could promote enzyme-antibody coupling reactions. A highly soluble, supercharged variant of the enzyme human enteropeptidase light chain was created by a site-directed mutagenesis of surface amino acids, used for the production of an antibody-enzyme conjugate and compared to the wild type enzyme. RESULTS Wild type and mutant enzyme could successfully be cross-coupled to an antibody to give antibody-enzyme conjugates suitable for ELISA. Their assay performances and the analysis of the enzyme activities in solution demonstrate that the supercharged version could be coupled to a higher extent, which resulted in better assay sensitivities. The generated conjugate, based on the supercharged enzyme, was feasible as a reporter molecule in a sandwich ELISA and allowed the detection of epidermal growth factor with a detection limit of 15.63 pg (25 pmol/L). CONCLUSION The highly soluble, surface supercharged, human enteropeptidase light chain mutant provided better yields in coupling the enzyme to an antibody than the wild type. This is most likely related to the higher protein concentration during the coupling. The data suggest that supercharging can be applied favourably to other proteins which have to be covalently linked to other polymers or surfaces with high yields without losses in enzyme activity or specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface supercharged human enteropeptidase light chain shows improved solubility and refolding yield.

Enteropeptidase is a serine protease used in different biotechnological applications. For many applications the smaller light chain can be used to avoid the expression of the rather large holoenzyme. Recombinant human enteropeptidase light chain (hEPL) shows high activity but low solubility and refolding yields, currently limiting its use in biotechnological applications. Here we describe sever...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

Stability Improvement of Immobilized a-amylase using Nano Pore Zeolite

Background: Enzyme engineering by immobilization techniques has proven to be well compatible with the other chemical or biological approaches aiming to improve enzyme’s functions and stability. Zeolites are porous alumino-silicates with a wide range of porosity and particle size along with the other remarkable properties such as high surface area, high stability against a wide range temperature...

متن کامل

Optimization of Lipase Immobilization

Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014